
1

This video will present some tips for troubleshooting errors in your script.



There are several types of syntax problems that are common when first 

learning to write scripts. Syntax errors and typos can be tedious and frustrating 

to correct during the debugging process but they can easily avoided by paying 

a little extra attention to the details when writing the script. 

2



Copying and pasting is an easy way to avoid typos in file names and for long 

variable names. File workspaces and names can be copied directly from 

ArcCatalog, ArcMap, or Windows Explorer. Variables and expressions in 

Python are case-sensitive. When using the python interface, key words will 

change color when typed correctly. Using the auto-complete feature will help 

avoid mistakes in spelling method and property names. You can test individual 

statements in the Python Shell to catch any mistakes immediately.

3



When an error occurs while running a script, Python will automatically provide

the information needed for tracking down the error. Information relating to 

errors will appear as red text in the Python Shell. 

The error message begins with the file pathname of the script that failed.

Next is the line number that corresponds to the failure…

Followed by the actual statement that failed.

The last part of the message gives a description of the error.

4



The line reported in the error message is the place to start when 

troubleshooting your script; however, keep in mind that it is not necessarily the 

source of the problem.

Begin by checking for any apparent problems in the line reported in Python’s 

error message. If you don’t find the source of the problem in that line…

Then you will need to work backward in your script through the statements that 

provided the inputs to the failed line.

Keep in mind that the source of general syntax errors, such as an unclosed 

parenthesis, is in a statement above the reported line (usually in the preceding 

statement).

5



To go to a specific line, type alt-G…

And enter the line number.

Line numbers in the IDLE script window are indicated in the lower right corner 

of the window.

6



Let’s work through an example of the process of troubleshooting an error. 

Assume that this is the statement on which the script crashed.

First, examine the error description for clues. 

In this case, Python doesn’t know how to interpret soils. If it’s supposed to be 

a variable, it either hasn’t been defined previously or it has been misspelled in 

the current line. If soils is supposed to be a string, then it needs to have 

quotes. 

7



If we’re sure that soils should be a variable, then we need to find out where 

and if it is defined in order to figure out why Python doesn’t recognize it. To 

search for a word in your script, type ctrl-F to open the search window. Type in 

the word you’re searching for and make sure the up direction is selected – the 

variable should have been defined on a previous line. If your search doesn’t 

find a variable named soils on a previous line, then you’ll have confirmed the 

problem is an undefined or misspelled variable. 

8



In this example, the error message tells us …

the failed statement is on line 55…

And the Addfield_management method we’re trying to use doesn’t exist. This 

error typically indicates a spelling error.

If we look up the ArcGIS help page for this tool, we’d find that the “F” should 

be uppercase. Using auto-complete helps avoid this type of error.

9



A general syntax error will cause 

a Syntax error window to open when you run your script…

and a line to be highlighted. The syntax problem is typically in the preceding 

statement.

In this case, the error was due to an open parenthesis.

10



Another type of syntax error is associated with compound statements. 

Compound statements are multi-line statements, such as loops, and start with 

a header line.

The header line of a compound statements must end with a colon. 

The error in this case is due to a missing colon.

11



Another error associated with compound statements has to do with 

indentation. 

Statements under the header line must have consistent indentation…

any extra space in the indentation will cause an error.

12



When running ArcTools or Python modules, the error message may list 

multiple scripts. 

In this case, you’ll need to find the information associated with you script – it is 

most likely an error in your script that caused the ArcTool or Python tool to 

crash.

The error description indicates an invalid value was used for a parameter.

The error description further states that a particular input file does not exist.

13



Once we locate the failed statement in our script,

Then we’ll want to confirm that the input file, indicated in the error message, 

does not exist. We can test this in the Python Shell using the arcpy.Exists tool.

If the test returns a False value, then we’ll need to check the workspace and 

name associated with the input file. 

In this case, an incorrect workspace was the source of the problem.

14



In another example,

We need to find the error associated with our script…

And disregard errors associated with arcpy or other modules.

Note that we have a warning message – this is not necessarily a problem. In 

this case the warning is not associated with the error.

The error description indicates that there is an invalid parameter value.

15



In this case, the error message did not indicate any problems with the 

input/output files so we can focus on checking the remaining parameters in the 

statement. 

Note that “ALL” was intended to be the value for the tool’s dissolve type

parameter.

Open the tool’s help page and check through each parameter making sure that 

the specified parameters have appropriate values and that no required 

parameters have been skipped.

In this case, checking the parameters reveals that the line_end_type

parameter is missing a placeholder. 

Although line_end_type is an optional parameter, and we chose not to specify 

a value, we still need to include the empty quotes as a placeholder so that the 

value for the dissolve_type parameter will be in the correct position.

16



The error in this example is due to a file lock which usually results from the file 

being open in another application such as…

ArcMap…

Or your script. 

The solution is to remove the corresponding layer from ArcMap. Sometimes 

closing ArcMap or ArcCatalog is also necessary.

If closing ArcMap failed to release the lock, then you may need to restart 

Python to release any file locks.

17



In this case, we have a failure associated with a statement in…

Line 49 which uses arcpy’s buffering tool.

The error description indicates that an “Invalid SQL statement was used”. This 

error should not be expected because…

The buffering tool uses no SQL statements.

Thus the actual error is not in the statement that failed

And we need to trace the error back to the source.

18



The first step, as always, is to check the failed statement – even if you suspect 

the error is in a previous statement. 

While checking the statement, using the tool’s help page as a guide, you’ll 

notice that there is no parameter for which there could be an invalid SQL 

statement. 

The next step is to check the files specified for the input and output files.

The first input file in this case is a layer file – note that layer files need no file 

extension. Layers can be thought of as a temporary copy of an actual dataset. 

One purpose of layer files is to allow SQL queries to be used to select items 

from a dataset.

In this case, the “town_wetland_lyr” was created using arcpy’s

MakeFeatureLayer tool. 

This tool contains an SQL expression as a parameter – this is a likely source 

of the error that we’re trying to troubleshoot.

19



When we trace the expression variable to its definition…

We find that there is a missing single quote…

In an SQL statement, there need to be single quotes around strings within the 

statement.

The error in this example shows that the actual problem may be far removed 

from the statement that crashed the script. Frequent testing of your script, as 

you develop it, can allow you to catch errors while they are still easy to find.

20



It is often useful to have a script get a count of the number of features in layer 

or dataset …

This is helpful for checking that selection expressions were correctly applied 

when creating layer files. …

It can also allow you to prevent the script from running a process on empty 

datasets which could cause a crash

The GetCount tool allows you to get a count of the number of features in a 

dataset or layer. The output of the tool is a result object and the getOutput

method is needed to extract the value. The value is extracted as a string so 

you will want to convert the string to an integer number using the int function.

21


